Open Access
Issue
Natl Sci Open
Volume 4, Number 5, 2025
Article Number 20250027
Number of page(s) 21
Section Earth and Environmental Sciences
DOI https://doi.org/10.1360/nso/20250027
Published online 05 September 2025
  • Ling X, Wang H, Huang S, et al. The renaissance of black phosphorus. Proc Natl Acad Sci USA 2015; 112: 4523-4530. [Article] [Google Scholar]
  • Li X, Yu Z, Xiong X, et al. High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci Adv 2019; 5: eaau3194. [Article] [Google Scholar]
  • Sun Z, Xie H, Tang S, et al. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew Chem Int Ed 2015; 54: 11526-11530. [Article] [Google Scholar]
  • Zhou Q, Chen Q, Tong Y, et al. Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection. Angew Chem Int Ed 2016; 55: 11437-11441. [Article] [CrossRef] [PubMed] [Google Scholar]
  • Luo ZC, Liu M, Guo ZN, et al. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt Express 2015; 23: 20030. [Article] [Google Scholar]
  • Tao W, Zhu X, Yu X, et al. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Adv Mater 2017; 29: 1603276. [Article] [Google Scholar]
  • Xu Y, Ren F, Liu H, et al. Cholesterol-modified black phosphorus nanospheres for the first NIR-II fluorescence bioimaging. ACS Appl Mater Interfaces 2019; 11: 21399-21407. [Article] [Google Scholar]
  • Srivastava A, Verma A, Das R, et al. A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus. Optik 2020; 203: 163430. [Article] [Google Scholar]
  • Chen T, Zeng W, Tie C, et al. Engineered gold/black phosphorus nanoplatforms with remodeling tumor microenvironment for sonoactivated catalytic tumor theranostics. Bioact Mater 2022; 10: 515-525. [Article] [Google Scholar]
  • Shao J, Xie H, Huang H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat Commun 2016; 7: 12967. [Article] [Google Scholar]
  • Zeng X, Luo M, Liu G, et al. Polydopamine‐modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv Sci 2018; 5: 1800510. [Article] [Google Scholar]
  • Sun C, Wen L, Zeng J, et al. One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Biomaterials 2016; 91: 81-89. [Article] [Google Scholar]
  • Kumar V, Brent JR, Shorie M, et al. Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl Mater Interfaces 2016; 8: 22860-22868. [Article] [Google Scholar]
  • Zeng J, Ruan F, Wu M, et al. Black phosphorus quantum dots cause glucose metabolism disorder and insulin resistance in mice. Ecotoxicol Environ Saf 2022; 246: 114168. [Article] [Google Scholar]
  • You R, Mu Y, Zhou J, et al. Ferroptosis is involved in trophoblast cells cytotoxicity induced by black phosphorus nanoparticles. Toxicology 2024; 505: 153810. [Article] [Google Scholar]
  • Mohamad Latiff N, Mayorga-Martinez CC, Sofer Z, et al. Cytotoxicity of phosphorus allotropes (black, violet, red). Appl Mater Today 2018; 13: 310-319. [Article] [Google Scholar]
  • Dolai J, Mandal K, Jana NR. Nanoparticle size effects in biomedical applications. ACS Appl Nano Mater 2021; 4: 6471-6496. [Article] [Google Scholar]
  • Xia T, Kovochich M, Liong M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2008; 2: 85-96. [Article] [Google Scholar]
  • Linares J, Matesanz MC, Vila M, et al. Endocytic mechanisms of graphene oxide nanosheets in osteoblasts, hepatocytes and macrophages. ACS Appl Mater Interfaces 2014; 6: 13697-13706. [Article] [Google Scholar]
  • Li Y, Lu Z, Li Z, et al. Cellular uptake and distribution of graphene oxide coated with layer-by-layer assembled polyelectrolytes. J Nanopart Res 2014; 16: 2384. [Article] [Google Scholar]
  • Ambrosi A, Sofer Z, Pumera M. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew Chem Int Ed 2017; 56: 10443-10445. [Article] [Google Scholar]
  • Zhao W, Xue Z, Wang J, et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids. ACS Appl Mater Interfaces 2015; 7: 27608-27612. [Article] [Google Scholar]
  • Augustine R, Hasan A, Primavera R, et al. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater Today Commun 2020; 25: 101692. [Article] [Google Scholar]
  • Bai X, Wang S, Yan X, et al. Regulation of cell uptake and cytotoxicity by nanoparticle core under the controlled shape, size, and surface chemistries. ACS Nano 2020; 14: 289-302. [Article] [Google Scholar]
  • Mu Q, Su G, Li L, et al. Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl Mater Interfaces 2012; 4: 2259-2266. [Article] [Google Scholar]
  • He C, Hu Y, Yin L, et al. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010; 31: 3657-3666. [Article] [Google Scholar]
  • Kästner C, Böhmert L, Braeuning A, et al. Fate of fluorescence labels—Their adsorption and desorption kinetics to silver nanoparticles. Langmuir 2018; 34: 7153-7160. [Article] [Google Scholar]
  • Katsikari A, Patronidou C, Kiparissides C, et al. Uptake and cytotoxicity of poly(D,L-lactide-co-glycolide) nanoparticles in human colon adenocarcinoma cells. Mater Sci Eng-B 2009; 165: 160-164. [Article] [Google Scholar]
  • Chaikhumwang P, Kitsongsermthon J, Manopakdee K, et al. Cationic polylactic acid-based nanoparticles improve BSA-FITC transport across M cells and engulfment by porcine alveolar macrophages. AAPS PharmSciTech 2020; 21: 134. [Article] [Google Scholar]
  • Mo J, Xie Q, Wei W, et al. Revealing the immune perturbation of black phosphorus nanomaterials to macrophages by understanding the protein corona. Nat Commun 2018; 9: 2480. [Article] [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Lim Y, Zhou W, Li G, et al. Black phosphorus nanomaterials regulate the aggregation of amyloid-β. ChemNanoMat 2019; 5: 606-611. [Article] [Google Scholar]
  • Xiao Q, Tu X, Cao H, et al. Interaction thermodynamics investigation of bovine serum albumin with black phosphorus quantum dots via spectroscopic and molecular simulation techniques. J Mol Struct 2023; 1276: 134725. [Article] [Google Scholar]
  • Huang S, Yang E, Liu Y, et al. Low-temperature rapid synthesis of nitrogen and phosphorus dual-doped carbon dots for multicolor cellular imaging and hemoglobin probing in human blood. Sens Actuat B-Chem 2018; 265: 326-334. [Article] [Google Scholar]
  • Zhou Y, Yu M, Liang H, et al. Novel dual-effective Z-scheme heterojunction with g-C3N4, Ti3C2 MXene and black phosphorus for improving visible light-induced degradation of ciprofloxacin. Appl Catal B-Environ 2021; 291: 120105. [Article] [Google Scholar]
  • Fukushima K, Yonezawa M, Rengakuji S, et al. Pyrolysis of triphenyl (diphenoxyphosphinyl)phosphorimidate. J Anal Appl Pyrolysis 1998; 45: 41-58. [Article] [Google Scholar]
  • Lu Y, Lu Y, Yang Y, et al. Synthesis and application of a novel high durable cotton flame retardant rich in PN covalent bonds and ammonium phosphate groups. Chem Eng J 2023; 454: 140422. [Article] [Google Scholar]
  • Thurakkal S, Zhang X. Covalent functionalization of two-dimensional black phosphorus nanosheets with porphyrins and their photophysical characterization. Mater Chem Front 2021; 5: 2824-2831. [Article] [Google Scholar]
  • Liu X, Liu Y, Wang Y, et al. High electrosorption capacity of uranium (VI) by carboxylic acid functionaliszed N,P Co-doped carbon materials. J Electrochem Soc 2021; 168: 066514. [Article] [Google Scholar]
  • Kiliaris P, Papaspyrides CD. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog Polym Sci 2010; 35: 902-958. [Article] [Google Scholar]
  • Ribeiro HB, Pimenta MA, de Matos CJS. Raman spectroscopy in black phosphorus. J Raman Spectr 2018; 49: 76-90. [Article] [Google Scholar]
  • Lord MS, Foss M, Besenbacher F. Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 2010; 5: 66-78. [Article] [Google Scholar]
  • Ma X, Sun R, Cheng J, et al. Fluorescence aggregation-caused quenching versus aggregation-induced emission: A visual teaching technology for undergraduate chemistry students. J Chem Educ 2016; 93: 345-350. [Article] [Google Scholar]
  • Zhao H, Zhang W, Liu Z, et al. Insights into the intracellular behaviors of black-phosphorus-based nanocomposites via surface-enhanced Raman spectroscopy. Nanophotonics 2018; 7: 1651-1662. [Article] [Google Scholar]
  • da Cruz Schneid A, Albuquerque LJC, Mondo GB, et al. Colloidal stability and degradability of silica nanoparticles in biological fluids: A review. J Sol-Gel Sci Technol 2022; 102: 41-62. [Article] [Google Scholar]
  • Zhao F, Zhao Y, Liu Y, et al. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 2011; 7: 1322-1337. [Article] [Google Scholar]
  • Vikesland PJ, Rebodos RL, Bottero JY, et al. Aggregation and sedimentation of magnetite nanoparticle clusters. Environ Sci-Nano 2016; 3: 567-577. [Article] [Google Scholar]
  • Brandenberger C, Mühlfeld C, Ali Z, et al. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 2010; 6: 1669-1678. [Article] [Google Scholar]
  • Chen W, Ouyang J, Liu H, et al. Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer. Adv Mater 2017; 29: 1603864. [Article] [Google Scholar]
  • Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem Sci 2020; 11: 923-936. [Article] [Google Scholar]
  • McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011; 12: 517-533. [Article] [Google Scholar]
  • Popova NV, Deyev IE, Petrenko AG. Clathrin-mediated endocytosis and adaptor proteins. Acta Naturae 2013; 5: 62-73. [Article] [Google Scholar]
  • Pelkmans L, Bürli T, Zerial M, et al. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 2004; 118: 767-780. [Article] [Google Scholar]
  • Manzanares D, Ceña V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics 2020; 12: 371. [Article] [Google Scholar]
  • Chen W, Ouyang J, Yi X, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater 2018; 30: 1703458. [Article] [Google Scholar]
  • Chang M, Zhang L, Zhang T, et al. Ultrasound-augmented enzyodynamic-Ca2+ overload synergetic tumor nanotherapy. Biomaterials 2024; 307: 122513. [Article] [Google Scholar]
  • Shao J, Ruan C, Xie H, et al. Photochemical activity of black phosphorus for near-infrared light controlled in situ biomineralization. Adv Sci 2020; 7: 2000439. [Article] [Google Scholar]
  • Pan T, Fu W, Xin H, et al. Calcium phosphate mineralized black phosphorous with enhanced functionality and anticancer bioactivity. Adv Funct Mater 2020; 30: 2003069. [Article] [Google Scholar]
  • Zhao X, Ma X, Wu G, et al. Black phosphorus nanosheets induce apoptosis of triple-negative breast cancer cells mediated by mitochondrial apoptosis pathway. Chin J Front Med Sci (Electron Version) 2023; 15: 25–32 [Google Scholar]
  • Xiao Y, Li Z, Bianco A, et al. Recent advances in calcium-based anticancer nanomaterials exploiting calcium overload to trigger cell apoptosis. Adv Funct Mater 2023; 33: 2209291. [Article] [Google Scholar]
  • Zhou W, Pan T, Cui H, et al. Black phosphorus: Bioactive nanomaterials with inherent and selective chemotherapeutic effects. Angew Chem Int Ed 2019; 58: 769-774. [Article] [Google Scholar]
  • Geng S, Zhang X, Luo T, et al. Combined chemotherapy based on bioactive black phosphorus for pancreatic cancer therapy. J Control Release 2023; 354: 889-901. [Article] [Google Scholar]
  • Shao X, Ding Z, Zhou W, et al. Intrinsic bioactivity of black phosphorus nanomaterials on mitotic centrosome destabilization through suppression of PLK1 kinase. Nat Nanotechnol 2021; 16: 1150-1160. [Article] [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.